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Abstract. We show that the carrier “antibinding” observed recently in semiconductor quantum dots, i.e.,
the fact that the ground state energy of two electron-hole pairs goes above twice the ground-state energy
of one pair, can entirely be assigned to a charge separation effect, whatever its origin. In the absence of
external electric field, this charge separation comes from different “spreading-out” of the electron and hole
wavefunctions linked to the finite height of the barriers. When the dot size shrinks, the two-pair energy
always stays below when the barriers are infinite. On the opposite, because barriers are less efficient for
small dots, the energy of two-pairs in a dot with finite barriers, ends by behaving like the one in bulk, i.e.,
by going above twice the one-pair energy when the pairs get too close. For a full understanding of this
“antibinding” effect, we have also reconsidered the case of one pair plus one carrier. We find that, while
the carriers just have to spread out of the dot differently for the “antibinding” of two-pairs to appear, this
“antibinding” for one pair plus one carrier only appears if this carrier is the one which spreads out the
less. In addition a remarkable sum rule exists between the “binding energies” of two pairs and of one pair
plus one carrier.

PACS. 78.67.Hc Quantum dots – 73.21.La Quantum dots

A very large amount of works are still devoted to the study
of semiconductor quantum dots because of their possible
applications in nanotechnology. The fundamental aspects
of these quantum dots are however now essentially under-
stood [1]: when a few carriers of mass m are confined in a
box of characteristic size R, their kinetic energy is of the
order of �

2/mR2, while their Coulomb energy is order of
e2/R; so that, if the box size is small compared to �

2/me2

(the so-called “strong-confinement regime”), Coulomb ef-
fects play a minor role — even if the absolute value of the
Coulomb energy in a dot is larger than the usual one in
bulk, for the carriers are closer. This is why the physics
of quantum dots is essentially a one-body physics, driven
by confinement: besides small energy shifts and level split-
tings, many-body effects in a dot are not expected to be
of great interest in these confined systems.

Recently, however, a rather surprising “antibinding”
effect has been observed in these dots: if one measures
the lowest energy of two electron-hole pairs in the strong
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confinement regime, one finds that it goes from below to
above twice the ground state energy of one-pair, when the
dot size decreases (see Refs. [2–5] and references therein).
Let us stress that this is not really an “antibinding” ef-
fect because the carriers always stay bound to the dot due
to the strong confinement. A two-pair energy above twice
one-pair is however surprising at first because we are used
to biexciton always having an energy below twice the ex-
citon energy. This actually comes from the fact that, in
extended systems, the excitons can move freely; so that,
to decrease their energy, they adjust their distance at an
optimum value D∗ which results from the competition be-
tween the kinetic energy they lose and the Coulomb energy
they gain when they get closer.

The same argument may actually lead to think that
the observed “antibinding” is in fact just normal! Indeed,
if the particles get closer than D∗, which is what hap-
pens in small dots, the energy of two-pairs in bulk should
start to rise because of the kinetic contribution. It should
thus end by getting above twice the energy of one exci-
ton. Consequently, it may appear as reasonable to find a
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two-pair “antibinding” when the dot size decreases, the
pairs ending by being too close.

This way of thinking is actually incorrect: in a dot, the
carriers are forced to stay together, at a given distance,
by confinement. They have no choice! The kinetic energy
necessary to stay so close, is actually paid once we put
the carriers in the box. When comparing the energy of
two pairs to twice the energy of one pair, we are thus left
with the Coulomb parts only. As the dipolar attraction
between electron-hole pairs makes their Coulomb contri-
butions to the energy always negative, this should lead to
a two-pair energy always below twice the energy of one
pair, in contradiction with the experimental data.

The purpose of this paper is to show that the energy
of two pairs going above twice the energy of one pair can
entirely be assigned to charge separation, whatever its ori-
gin. It must be pointed out that such a charge separation
exists even in the absence of an external electric field. It
results from a “spreading-out” effect which increases when
the dots shrink. The pairs, forced to stay closer than their
optimum distance D∗, would love to get out of the box,
in order to behave like free pairs in a bulk sample. This is
of course impossible if the barrier height is really infinite:
for such a barrier, the two-pair energy always stays below
twice one-pair. However, for finite barriers, the carriers
can partly escape from the dot and experience a subtle
interplay between Coulomb interaction and confinement,
i.e., interaction with the continuum linked to the envi-
ronment of the dot [6]; consequently, the price in kinetic
energy needed to put a carrier inside the dot is not really
constant but depends on the dot size, through a barrier-
dependent term.

In confined systems, what is really important is not
so much the absolute value of the barrier height, but its
relative value compared to the characteristic energy of the
dot, namely �

2/mR2. This led us to introduce [7] the di-
mensionless parameter νi which characterizes a barrier of
height Vi for a carrier of mass mi trapped in a spherical
dot of radius R. This parameter is defined as

Vi =
ν2

i �
2

2miR2
. (1)

While νi is always infinite when Vi is infinite, it goes to
zero for finite Vi when the dot shrinks: a dot size reduction
makes a given barrier less and less efficient to prevent the
carriers from spreading-out.

The purpose of this work is to show that the charge
separation between the electron and the hole of a dot
leads, just by itself, to a two-pair energy going above twice
the one-pair energy. The analytical results presented here
are very general, and apply to quantum dots of any ge-
ometry within the strong confinement regime: to use them
for a particular experiment, one just has to introduce the
specific carrier wave functions of the dot in the relevant
quantities given in equations (2, 11, 13). For the purpose of
illustration, the numerical results given here correspond to
a model spherical dot. In order to fully control the physics
of this phenomenon, we have also reconsidered analytically
the case of one pair plus one carrier [9]. Even without elec-

tric field, the energy of one pair plus one hole ends by going
above the energy of one pair plus the energy of one hole if
— but only if — the electron spreads out more than the
hole, while in the case of two pairs, the electron and hole
just have to spread out differently, for the “antibinding”
to appear.

General background on a few carriers
in quantum dot

One carrier, electron (e), or hole (h), trapped in a dot, is
characterized by a quantum number ni, with i = (e, h),
its energy and wave function being ε

(i)
ni and ϕ

(i)
ni (r). If we

put more than one carrier in a dot, they feel each other
by Coulomb interactions — and possibly by Pauli exclu-
sion, if their spins are identical. The Coulomb potential
in a confined geometry is characterized by a set of matrix
elements V

(ij)
n′

im
′
jmjni

between electrons, between holes and
between electrons and holes, defined as

V
(ij)
n′

im
′
jmjni

=
∫

d3r d3r′ ϕ(i)
n′

i

∗
(r)ϕ

(j)
m′

j

∗
(r′)

× e2

|r − r′| ϕ(j)
mj

(r′)ϕ(i)
ni

(r). (2)

In small enough dots, it is well-known that the energy of
a few carriers is dominated by the kinetic contribution,
and so that the Coulomb interactions can be treated as a
perturbation [1,8]. Up to second order, the ground state
energy of one electron-hole pair thus reads as

E(eh)

0̄
= ε

(e)
0 + ε

(h)
0 − V

(eh)
0000 + W (eh) + · · · (3)

where 0 is the ground state quantum number, the second
order Coulomb term W (i,j) being

W (ij) =
∑

(ni,mj) �=(0,0)

|V (ij)
nimj00

| 2
ε
(i)
0 + ε

(j)
0 − ε

(i)
ni − ε

(j)
mj

. (4)

In the same way, the ground state energy of one pair plus
one carrier i = (e, h), with different spins, reads

E
(ehi)
0 = ε

(e)
0 +ε

(h)
0 +ε

(i)
0 +V

(ii)
0000−2 V

(eh)
0000 +W (ii) +2 W (eh)

(5)
while the ground state energy of two pairs with different
spins is given by

E
(eehh)
0 = 2 ε

(e)
0 +2 ε

(h)
0 + V

(ee)
0000 + V

(hh)
0000 − 4 V

(eh)
0000

+W (ee) + W (hh) + 4 W (eh) + · · · (6)

The Coulomb expansions of the carrier energies given
above are valid when the dot size is small, more precisely
when the dimensionless parameter rd, characterizing a dot
of volume Ω, defined as

Ω =
4
3
πr3

da3
X (7)
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is small compared to 1, aX = �
2/µe2 being the Bohr ra-

dius with µ−1 = m−1
e +m−1

h . (For spherical dot, rd is just
the dot radius in Bohr units). The Coulomb expansions
(3-6), valid for small dots, in fact correspond to a small rd

expansion.

Equations (3, 6) allow to obtain the lowest energies
of one pair, two pairs and one pair plus one carrier for
any dot shape and barrier height, up to second order in
Coulomb interaction: to get them, we just need to first
determine the free carrier eigenstates, ε

(i)
ni and ϕ

(i)
ni (r) (see

e.g. [2,3,6]), and then to use these wave functions in the
V (ij) Coulomb matrix elements defined in equation (2).

For the purpose of illustration, we here consider a
model spherical dots with infinite barriers. The problem
is quite simple in the case of spherical dots because the
free carrier eigenstates are then analytically known, the
ground state energy being given by

ε
(i)
0 =

π2

r2
d

µ

mi
RX (8)

with RX = �
2/2 µ a2

X . As the wave functions ϕ
(i)
ni (r) for

infinite barriers do not depend on mass, the V
(ij)
n′

im
′
jmjni

’s
do not depend on (i, j), the one between ground states
being equal to V

(ij)
0000 � 3.57 RX/rd. This makes all the

second order Coulomb terms W (ij) also equal for equal
electron and hole masses - while they differ for me �= mh.

Consequently, in the case of spherical dots with infinite
barriers, we find the following energy expansions:

E(eh)
0 = RX

[
π2

r2
d

− 3.57
rd

− c(eh)(me, mh) + O(rd)
]

E
(ehi)
0 = RX

[
π2

r2
d

(
1 +

µ

me

)
− 3.57

rd

− c(ehi)(me, mh) + O(rd)

]

E
(eehh)
0 = 2 RX

[
π2

r2
d

− 3.57
rd

− c(eehh)(me, mh) + O(rd)
]

.

(9)

For me = mh, all the W’s are equal to (−γ RX) with
γ = 0.133 so that c(eh) = γ, while c(ehi) = c(eehh) = 3 γ

(Note that E
(eehh)
0 has a factor 2 in front). For different

electron and hole masses, more precisely, in the particular
case of me = 0.0665 and mh = 0.340, which corresponds
to pure GaAs, these quantities become c(eh) = 0.182,
c(ehh) = 0.772, c(ehe) = 0.444 while c(eehh) = 0.608 (The
first 20 electron and 20 hole levels were taken into account
to achieve convergence of these sums).

Carrier “binding” energy

The “binding” energy ∆(ehi) of one pair plus one carrier
i = (e, h) can be defined as

−∆(ehi) = E
(ehi)
0 − E(eh)

0 − ε
(i)
0

= δ
(ehi)
1 + δ

(ehi)
2 + · · · (10)

Using equations (3, 5), we find that the second order term
is just δ

(ehi)
2 = W (eh) + W (ii) while the first order term

can be rewritten [9], using the definition of V
(ij)
0000 given in

equation (2), as

δ
(ehi)
1 =

∫
dr dr′

e2

|r − r′| ni(r) |ϕ(i)
0 (r′)| 2 (11)

where ni(r) = n(r) = |ϕ(h)
0 (r)| 2 − |ϕ(e)

0 (r)| 2 for i = h
and ni(r) = −n(r) for i = e.

In the same way, the “binding” energy of two pairs can
be defined as

−∆(eehh) = E
(eehh)
0 − 2 E(eh)

0

= δ
(eehh)
1 + δ

(eehh)
2 + · · · (12)

When using equations (3,6), the second order term is just
δ
(eehh)
2 = W (ee) + W (hh) + 2 W (eh) while the first order

term now reads

δ
(eehh)
1 =

∫
dr dr′

e2

|r − r′| n(r)n(r′). (13)

From equations (11, 13) and the definitions of the δ’s, it is
easy to check that a remarkable sum rule exists between
the “binding energies” of two pairs and of one pair plus
one carrier:

δ
(eehh)
1 = δ

(ehe)
1 + δ

(ehh)
1

δ
(eehh)
2 = δ

(ehe)
2 + δ

(ehh)
2 . (14)

Let us stress that equations (11, 13) as well as equa-
tion (14) are completely general, i.e., they do not rely
on any specific assumption for the dot geometry nor on
a possibly non-zero electric field. From equations (11, 13)
we already see that the first order Coulomb terms of these
“binding” energies reduce to zero if n(r) = 0 everywhere,
i.e., if the dot has a local carrier neutrality.

Dot with local carrier neutrality

Local carrier neutrality implies the absence of any external
electric field which tends to tear apart opposite charges.
We also need to assume infinite barriers or, possibly, car-
riers spreading out of the dot identically, for their wave
functions to be the same.

For n(r) = 0, the first order terms, δ
(ehi)
1 and δ

(eehh)
1

reduce to zero [10]. If we now turn to the second order
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terms, δ
(ehi)
2 and δ

(eehh)
2 , we see that they are both neg-

ative, for all the W’s are negative, the sum they contain
being taken over excited states. These second order terms,
which are the dominant ones in small dots in the absence
of first order terms, make the two binding energies ∆(ehi)

and ∆(eehh) positive (for the latter case, see [8]). We con-
clude that, in a small dot with infinite barrier, two-pairs,
and one-pair plus one carrier, are always below the ”disso-
ciated” configuration, i.e., twice one-pair or one-pair and
one carrier.

Dot with local charge separation

For non-zero electric fields, or for finite barriers and differ-
ent masses, i.e., different (mi, Vi), the two types of carriers
generally have different wave functions, so that n(r) differs
from zero. Due to e2/ |r − r′| , the integrals of δ

(ehi)
1 and

δ
(eehh)
1 , in equations (11, 13), are dominated by the r � r′

domain. As for such (r, r′), we have n(r)n(r′) � [n(r)]2,
so that the integrand of δ

(eehh)
1 is positive in the relevant

part of the integral, whatever the sign of n(r), making
δ
(eehh)
1 always positive.

If we turn to δ
(ehi)
1 , we see that, due to the additional

|ϕ(i)
0 (r)| 2, the important part of the integral given in equa-

tion (11), is now the one for r ≤ R. Consequently, the sign
of δ

(ehi)
1 is controlled by the sign of ni(r) inside the dot.

As the electron is usually the carrier which spreads out
the more, the hole wave function in the dot is larger than
the electron one, for the wave functions are normalized.
This leads to n(r) essentially positive in the dot, making
δ
(ehh)
1 positive and δ

(ehe)
1 negative.

When the first and second order terms are both neg-
ative, as for (ehe), the carrier “binding” energy is un-
ambiguously positive, even for extremely small dots. On
the opposite, when the first order term is positive, as
for (eehh) and (ehh), this first order term — even if
it is very small, i.e., if the electron and hole nearly
have the same wave function — must end by being the
dominant Coulomb contribution when the dot shrinks.
Consequently, the carrier “binding” energy, positive for in-
termediate dot sizes — as it is then dominated by the sec-
ond order Coulomb term — must turn negative when the
dot shrinks, in qualitative agreement with experimental
data [2,3]. Therefore the phenomenon of competition be-
tween first and second order Coulomb contributions drives
the cross-over between binding and antibinding. In [10]
we find a numerical calculation up to second order in
the Coulomb interaction illustrating ideally our argument.
One even notices that our sum rule (14) is accurately ver-
ified by Figure 2 of [10] in most of the size range (namely
above r = 90 A). Unfortunately in the antibinding region,
below r = 90 A, a small discrepancy appears, probably
due to limitations in the calculation of the second order
term. Nevertheless the overall numerical result of Figure 2
beautifully confirms the findings of our analytical theory.

To conclude we state our main thesis which says that,
in order to find an “antibinding” for two-electron-hole

pairs, we just need n(r) �= 0, i.e., a carrier local non-
neutrality, while to find such an “antibinding” for one-pair
plus one carrier, we need an excess charge inside the dot of
the same sign than the additional carrier. This conclusion
fully agree with experimental data [11–13].

Link with the carrier spreading-out

Let us end this work by taking again for an illustration,
a quantum dot with a spherical geometry, and show how
we can relate the dot size for the cross-over from “bind-
ing” to “antibinding” of (eehh) and (ehh), to one of the
important physical quantities for carriers in dots, namely
their spreading-out lengths.

In a previous communication [7], we have shown that
the energies of a particle with mass mi in a spheri-
cal dot of radius R and barrier height Vi, are given by
α2

i �
2/2miR

2 ≡ α2
i RX(π2/r2

d)(µ/mi). The αi’s for states
with l = 0 symmetry fulfil νi = αi/ sin(αi), where νi is
the parameter defined in equation (1). In the large νi

limit, i.e., for large Vi, this leads to αi ∼ π/(1 + ν−1
i )

for the ground state; so that the spatial extension di of
this ground state, defined as Ei = �

2/2mid
2
i , varies with

the effective barrier height νi as di � R (1 + ν−1
i ). Note

that, as expected, di is just equal to R for infinite barriers,
i.e., for infinite νi.

We now use this result in the “binding” energy first
order terms, equations (11, 13): since, due to dimensional
arguments, |ϕ(i)| 2 � 1/d3

i , the first order term δ
(eehh)
1 ,

given in equation (13), can be estimated as

δ
(eehh)
1 � R3R3 e2

R

(
1
d3

h

− 1
d3

e

)2

� e2 (de − dh)2

R3
� e2 (ν−1

e − ν−1
h )2

R3
(15)

while the same argument leads to

δ
(ehh)
1 � e2 (ν−1

e − ν−1
h )

R
(16)

with a similar result for δ
(ehe)
1 .

We now define the characteristic length li over which a
carrier mi spreads out of a material having a barrier Vi, as

Vi =
�

2

2mil2i
. (17)

(Note that this li is inversely proportional to
√

miVi, while
it is exactly 0 for infinite barrier.) Following part I, the
second order Coulomb term is of the order of (−e2/aX),
so that, from the definition of νi given in equation (1) —
in which enters the dot radius — we obtain a cross-over
radius from “binding” to “antibinding” which behaves as

R(eehh) � 3
√

aX(le − lh)2 (18)

R(ehi) �
∑

j=(e,h)

Θ(lj − li)
√

aX(lj − li) (19)
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where Θ(x) is the step function. This gives a finite cross-
over radius for (eehh) whatever (le, lh) are, while the one
for (ehi) depends on the sign of (le − lh). For le − lh > 0,
which is the most usual situation, the cross-over radius
for (ehh) is finite while the one for (ehe) is zero, i.e., no
cross-over takes place when the dot is negatively charged.

Equations (18, 19) also show that when the barriers
are very high, the spreading-out lengths li are very small,
so that the cross-over radii are very small. For usual bar-
rier heights, however, the li’s are of the order of the Bohr
radius aX , making the cross-over radii also of the order of
aX . In order to fit a particular experiment, it is possible to
get precise values of these cross-overs by going back to the
expressions of the energies given in equations (3–6), the
purpose of this last part being just to get a physical un-
derstanding of this cross-over by establishing its physical
link with the carrier spreading-out lengths.

One should not however conclude in all cases that
charge separation increases when the quantum dot size di-
minishes. For example in wurtzite-type GaN/AlGaN het-
erostructures, where piezoelectricity or spontaneous po-
larization are prominent effects, charge separation effects
may increase with the quantum dot size [14], therefore the
behaviour of “binding energies” with the box size may be
strongly affected.

Comparison with other approaches

A number of authors have made very complex calculations
of 3D wave functions (accounting for the details of the
confinement potential resulting from the inhomogeneous
strain, band mixing, and the piezoelectric potential), and
subsequently have carried out configuration-interaction
calculation of the biexciton binding energy. Although it is
not our purpose here to include such effects, our approach
is able fully exploit the results of any such complex 3D nu-
merical single particle wave functions: the contrast lies in
the analysis of the results. An evaluation of equation (12)
with such wave functions allows to firmly assess the exact
size limit for the validity of the strong confinement regime:
for that, we just have to compare the level shifts of the two
approaches. More important, equation (12) also allows to
assess the relative magnitude of the first and second order
Coulomb contributions for different dot sizes. Note that in
the second order contribution, can also enter a nearby con-
tinuum of states. Finally, a numerical evaluation of equa-
tion (13) allows to prove that charge separation is already
of importance at first order, and being actually the main
cause for the antibinding of two pairs.

Let us now show how the results presented here, which
are completely general, would actually bring useful in-
sights in the understanding of specific experiments.

We focus on references [2,3] where the transition from
binding and antibinding is systematically studied, both
experimentally and numerically. These authors find a
qualitative agreement with experiments when the aspect
ratio is varied, but not the dot size. Their results also
show that, in the two-pair ground state of the largest dot,
namely 20 nm, there is still a relatively small mixing with

the other excited states due to the Coulomb interaction,
showing in this way that, in smaller dots, the strong con-
finement regime is certainly reached. The antibinding is
then attributed to a number of combined effects such as
“3D confinement, quenching correlations and exchange,
and causing local charge separation”, without precise eval-
uation of their relative importance, this relative impor-
tance being however crucial for physical understanding.

In order to show how we can analyze the results of
the numerical approaches within our procedure, let us fo-
cus on the calculation presented in [2]. In this work, the
authors do not vary the dot size to understand the tran-
sition to antibinding — which is the physically relevant
parameter — but vary the number of confined states they
include in the sums — which only is a mathematically rel-
evant parameter. Indeed, their numerical procedure is (i)
to fix the dot size at 13 nm and (ii) to vary the number
of bound states taken into account in the calculation, be-
tween 1 and 3. From our approach, it is clear that there
are fundamental flaws in this procedure: indeed, the con-
finement energy and the first and second order Coulomb
contributions all have a different, but crucial, dot size de-
pendence (see e.g. the explicit rd dependence in Eq. (6))
these dependences having nothing to do with the possi-
ble variation of the number of confined states included in
the numerical calculation. The latter procedure amounts
to only change the magnitude of the second order terms,
without any size effect.

A refined set of calculations is presented in reference [3]
where the previous criticism do not fully apply. Indeed
the authors convincingly show that a complex CI calcu-
lation reproduces the trend of the experiments when one
truly varies the QD size. They attribute the crossing to
“correlation” (which we here simply call “second order
corrections”). The authors of reference [3] check that the
number of excited hole bound states affect the crossing,
while the electrons do not. We agree and think that this is
a natural result of the smaller hole level spacing. However
besides the convergence check we feel again that it is diffi-
cult to draw definitive physical conclusions about the ac-
tual number of bound states from this artificial procedure.
In particular we note that there are also in principle con-
tributions from the continuum, and when a higher bound
state “disappears”, it merges in the continuum, however
it is not obvious to guess how much this effect increases
the contribution of the continuum.

The “Quantum Confined Stark Effect” on one and
two-pair states in small dots has also been investigated
in two different sets of experiments namely, random local
field [12], or external field [15]. Both show that the bind-
ing energy of two-pairs decreases with the external elec-
tric field strength at the dot position. Such a behaviour
is in perfect agreement with our discussion concerning
the importance, the sign and magnitude of the first order
term (13) in small dots, as a function of charge separation.

Experiments [11–13], involving the states of one pair
plus one carrier (the so-called “charged excitons”), with
possibly an additional external field [12,13], show that,
in small dots, the binding energy is of opposite sign for
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the two types of excess charge, and that the trend to
“antibind” is enhanced by the field for both types of ex-
cess charge. The authors explain it qualitatively by saying
that the electric field tends to tear apart opposite charges
and keep together identical charges, so that the repulsive
Coulomb interactions are wining over the attractive ones
when the field increases. This first explanation is fully in-
tuitive. Our equation (11) shines new light on this prob-
lem because it demonstrates that, in the end, it is just this
exact integral involving only the charge separation, eval-
uated with single-particle wavefunctions, that matters to
understand the behaviour of the “binding energy”.

Conclusion

We have shown, in very general terms, that the two-pair
ground state energy, in strongly confined quantum dots,
can possibly go above twice the energy of one-pair
due to a single physical quantity: the local charge
separation. Our conclusion holds independently of the
physical origin of the charge separation, which can be
complex and internal (e.g. due to piezoelectric fields
resulting from strain), or external (e.g. applied electric
fields). Even in the absence of electric field, local charge
separation can be induced by finite barrier heights,
the carriers spreading out of the dot differently. Only
the precise value of the cross-over is influenced by the
complicated geometry of real dots. It is attributed to a
competition effect between the first and second order
Coulomb contributions. While such an “antibinding”
always exists for two-pairs, it only exists for one-pair
plus one carrier if the additional carrier is the one which
spreads out the less. For illustration, we have, in the
case of spherical dots, related the radius of the cross-over
from “binding” to “antibinding” to the typical carrier
spreading-out lengths induced by the finite dot barriers.
As a by-product we have also found a remarkable sum
rule for the “binding energies” of two pairs and one pair
plus one carrier. Finally, we have shown how our approach

can be used to analyse the results of complex numerical
calculations of two-pair states in realistic dot geometry,
and how it allows to reinterpret a variety of experimental
data in strongly confined quantum dots.
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